Spectroscopic Ellipsometry Studies of n-i-p Hydrogenated Amorphous Silicon Based Photovoltaic Devices

نویسندگان

  • Laxmi Karki Gautam
  • Maxwell M. Junda
  • Hamna F. Haneef
  • Robert W. Collins
  • Nikolas J. Podraza
چکیده

Optimization of thin film photovoltaics (PV) relies on characterizing the optoelectronic and structural properties of each layer and correlating these properties with device performance. Growth evolution diagrams have been used to guide production of materials with good optoelectronic properties in the full hydrogenated amorphous silicon (a-Si:H) PV device configuration. The nucleation and evolution of crystallites forming from the amorphous phase were studied using in situ near-infrared to ultraviolet spectroscopic ellipsometry during growth of films prepared as a function of hydrogen to reactive gas flow ratio R = [H₂]/[SiH₄]. In conjunction with higher photon energy measurements, the presence and relative absorption strength of silicon-hydrogen infrared modes were measured by infrared extended ellipsometry measurements to gain insight into chemical bonding. Structural and optical models have been developed for the back reflector (BR) structure consisting of sputtered undoped zinc oxide (ZnO) on top of silver (Ag) coated glass substrates. Characterization of the free-carrier absorption properties in Ag and the ZnO + Ag interface as well as phonon modes in ZnO were also studied by spectroscopic ellipsometry. Measurements ranging from 0.04 to 5 eV were used to extract layer thicknesses, composition, and optical response in the form of complex dielectric function spectra (ε = ε₁ + iε₂) for Ag, ZnO, the ZnO + Ag interface, and undoped a-Si:H layer in a substrate n-i-p a-Si:H based PV device structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics

Hydrogenated amorphous silicon (a-Si:H) shows interesting optoelectronic and technological properties that make it suitable for the fabrication of passive and active micro-photonic devices, compatible moreover with standard microelectronic devices on a microchip. A temperature sensor based on a hydrogenated amorphous silicon p-i-n diode integrated in an optical waveguide for silicon photonics a...

متن کامل

Design and fabrication of photonic crystal thin film photovoltaic cells

We present the integration of an absorbing planar photonic crystal within a thin film photovoltaic cell. The devices are based on a stack including a hydrogenated amorphous silicon P-i-N junction surrounded by TCO layers, with a back metallic contact. Optical simulations exhibit a significant increase of the integrated absorption in the 300-720nm wavelength range. The global electro-optical cha...

متن کامل

Progress in a-Si:H / c-Si heterojunction emitters obtained by Hot-Wire CVD at 200 oC

In this work, we investigate heterojunction emitters deposited by Hot-Wire CVD on p-type crystalline silicon. The emitter structure consists of an n-doped film (20 nm) combined with a very thin intrinsic hydrogenated amorphous silicon buffer layer (5 nm). The microstructure of these films has been studied by Spectroscopic Ellipsometry in the UV-visible range. These measurements reveal that the ...

متن کامل

Studies of the Structure of Amorphous Silicon Solar Cell Materials and Devices Using Surface Analysis Techniques

Thin film hydrogenated amorphous silicon solar cells have been improved significantly through research, development and manufacturing since their discovery twenty years ago, but there are still a number of fundamental problems and issues that must be resolved before they can reach their full potential. There is still a significant lack of knowledge about the structure and bonding of hydrogenate...

متن کامل

Restricted epitaxial growth during thermal crystallization of nanocrystalline silicon: experiments and modeling

Hydrogenated nanocrystalline silicon (nc-Si:H) has attracted greater attention because of its improved transport properties with respect to hydrogenated amorphous silicon (a-Si:H) [1]. In addition, its deposition conditions are compatible with amorphous silicon technology which makes it possible to use both materials in the same device. In this sense, it has been proposed as a candidate for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016